Cadmium promotes apoptosis and inflammation via the circ08409/miR-133a/TGFB2 axis in bovine mammary epithelial cells and mouse mammary gland

Cadmium is a common environmental heavy metal pollutant that can accumulate over long periods of time and cause disease. Thus, analysis of the molecular mechanisms affected by cadmium in the body could be of great significance for the prevention and treatment of cadmium-related diseases. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2021-10, Vol.222, p.112477-112477, Article 112477
Hauptverfasser: Chen, Zhi, Liang, Yan, Lu, QinYue, Nazar, Mudasir, Mao, Yongjiang, Aboragah, Ahmad, Yang, Zhangping, Loor, Juan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cadmium is a common environmental heavy metal pollutant that can accumulate over long periods of time and cause disease. Thus, analysis of the molecular mechanisms affected by cadmium in the body could be of great significance for the prevention and treatment of cadmium-related diseases. In this study, flow cytometry, immunofluorescence, transmission electron microscopy, H&E (Hematoxylin Eosin) staining and TUNEL (TdT-mediated dUTP Nick-End Labeling) assays were used to verify that cadmium induced apoptosis and immune responses in bovine mammary epithelial cells (BMECs) and in mouse mammary gland. Isolated BMECs cultured with or without cadmium were collected to screen miRNA (microRNA) using high-throughput sequencing. There were 42 differentially-expressed miRNAs among which 27 were upregulated and 15 downregulated including bta-miR-133a, bta-miR-23b-5p, bta-miR-29e, bta-miR-365–5p, bta-miR-615, bta-miR-7, bta-miR-11975, bta-miR-127, and bta-miR-411a. Among those, miR-133a (which can specifically target TGFB2 (Recombinant Transforming Growth Factor Beta 2) was the most significantly downregulated with a fold-change of 5.27 in BMECs cultured with cadmium. Application of the double luciferase reporter system, western blotting, and qRT-PCR (Quantitative Real-time PCR) revealed that circ08409 can directly bind to miR-133a. Experiments demonstrated that circRNA-08409 could adsorb bta-miR-133a. Both circ08409 and TGFB2 significantly increased apoptosis and altered expression level of a series of inflammatory factors in BMECs. In contrast, miR-133a decreased significantly apoptosis and inflammation in the cells. Compared with cultures receiving only cadmium, the miR-133a+cadmium cultures exhibited significant reductions in the occurrence of late apoptosis. Overall, results indicated that circ08409 could relieve the inhibitory effect of miR-133a on TGFB2 expression by combining with miR-133a and subsequently modulating cell proliferation, apoptosis and inflammation. Overall, the data suggested that the circ08409/miR-133a/TGFB2 axis might play a role in mediating the effect of cadmium on BMECs. As such, data provide novel insights into controlling hazards that cadmium could induce in the mammary gland. Cadmium promotes apoptosis and inflammation via the circ08409/miR-133a/TGFB2 [Display omitted] •Cadmium can induce apoptosis and can interfere with the cell cycle at a certain dose.•High-throughput sequencing of miRNA in blank group and Cadmium treatment group.•Cadm
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.112477