A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning
Total Suspended Solids (TSS) and chlorophyll-a concentration are two critical parameters to monitor water quality. Since directly collecting samples for laboratory analysis can be expensive, this paper presents a methodology to estimate this information through remote sensing and Machine Learning (M...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-04, Vol.20 (7), p.2125 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Total Suspended Solids (TSS) and chlorophyll-a concentration are two critical parameters to monitor water quality. Since directly collecting samples for laboratory analysis can be expensive, this paper presents a methodology to estimate this information through remote sensing and Machine Learning (ML) techniques. TSS and chlorophyll-a are optically active components, therefore enabling measurement by remote sensing. Two study cases in distinct water bodies are performed, and those cases use different spatial resolution data from Sentinel-2 spectral images and unmanned aerial vehicles together with laboratory analysis data. In consonance with the methodology, supervised ML algorithms are trained to predict the concentration of TSS and chlorophyll-a. The predictions are evaluated separately in both study areas, where both TSS and chlorophyll-a models achieved R-squared values above 0.8. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20072125 |