Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly

Subcellular membrane-less organelles consist of proteins with low complexity domains. Many of them, such as hnRNPA1, can assemble into both a polydisperse liquid phase and an ordered solid phase of amyloid fibril. The former mirrors biological granule assembly, while the latter is usually associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-05, Vol.10 (1), p.2006-2006, Article 2006
Hauptverfasser: Gui, Xinrui, Luo, Feng, Li, Yichen, Zhou, Heng, Qin, Zhenheng, Liu, Zhenying, Gu, Jinge, Xie, Muyun, Zhao, Kun, Dai, Bin, Shin, Woo Shik, He, Jianhua, He, Lin, Jiang, Lin, Zhao, Minglei, Sun, Bo, Li, Xueming, Liu, Cong, Li, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subcellular membrane-less organelles consist of proteins with low complexity domains. Many of them, such as hnRNPA1, can assemble into both a polydisperse liquid phase and an ordered solid phase of amyloid fibril. The former mirrors biological granule assembly, while the latter is usually associated with neurodegenerative disease. Here, we observe a reversible amyloid formation of hnRNPA1 that synchronizes with liquid–liquid phase separation, regulates the fluidity and mobility of the liquid-like droplets, and facilitates the recruitment of hnRNPA1 into stress granules. We identify the reversible amyloid-forming cores of hnRNPA1 (named hnRACs). The atomic structures of hnRACs reveal a distinct feature of stacking Asp residues, which contributes to fibril reversibility and explains the irreversible pathological fibril formation caused by the Asp mutations identified in familial ALS. Our work characterizes the structural diversity and heterogeneity of reversible amyloid fibrils and illuminates the biological function of reversible amyloid formation in protein phase separation. Low complexity (LC) domains can drive the formation of both amyloid fibrils and protein droplets. Here, the authors identify reversible amyloid cores from the LC of hnRNPA1, based on which they elucidate the structural basis of reversible fibrillation and its interplay with hnRNPA1 droplet formation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09902-7