Compressing PDF sets using generative adversarial networks

We present a compression algorithm for parton densities using synthetic replicas generated from the training of a generative adversarial network (GAN). The generated replicas are used to further enhance the statistics of a given Monte Carlo PDF set prior to compression. This results in a compression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2021-06, Vol.81 (6), p.1-17, Article 530
Hauptverfasser: Carrazza, Stefano, Cruz-Martinez, Juan, Rabemananjara, Tanjona R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a compression algorithm for parton densities using synthetic replicas generated from the training of a generative adversarial network (GAN). The generated replicas are used to further enhance the statistics of a given Monte Carlo PDF set prior to compression. This results in a compression methodology that is able to provide a compressed set with smaller number of replicas and a more adequate representation of the original probability distribution. We also address the question of whether the GAN could be used as an alternative mechanism to avoid the fitting of large number of replicas.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-021-09338-8