Passivity-Based Control with Disturbance Observer of Electromagnetic Formation Flight Spacecraft in the Port-Hamiltonian Framework

Satellite formation flying technology currently represents a focal point in space mission research. Traditional spacecraft payload performance and lifespan are often constrained by propellant limitations. Electromagnetic Formation Flying (EMFF), a propellant-free formation flying technique, has garn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-05, Vol.14 (10), p.4248
Hauptverfasser: Wang, Jiaming, Zhou, Qingrui, Zheng, Wei, Shao, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Satellite formation flying technology currently represents a focal point in space mission research. Traditional spacecraft payload performance and lifespan are often constrained by propellant limitations. Electromagnetic Formation Flying (EMFF), a propellant-free formation flying technique, has garnered widespread attention. Its inherent strong nonlinearity and coupling present challenges for high-precision control within EMFF. This paper presents the relative motion dynamics of a two-satellite EMFF in the port-Hamiltonian framework and constructs an accurate nonlinear model of the dynamics. Utilizing the concept of Interconnection and Damping Assignment and nonlinear disturbance observer, a composite disturbance-rejection passivity-based controller is designed, offering a method for controlling the magnetic dipole strength of formation satellites. Finally, numerical simulations are conducted to demonstrate the viability of the proposed dynamics model and control strategy.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14104248