Automated screening for Fragile X premutation carriers based on linguistic and cognitive computational phenotypes

Millions of people globally are at high risk for neurodegenerative disorders, infertility or having children with a disability as a result of the Fragile X (FX) premutation, a genetic abnormality in FMR1 that is underdiagnosed. Despite the high prevalence of the FX premutation and its effect on publ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-06, Vol.7 (1), p.2674-11, Article 2674
Hauptverfasser: Movaghar, Arezoo, Mailick, Marsha, Sterling, Audra, Greenberg, Jan, Saha, Krishanu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Millions of people globally are at high risk for neurodegenerative disorders, infertility or having children with a disability as a result of the Fragile X (FX) premutation, a genetic abnormality in FMR1 that is underdiagnosed. Despite the high prevalence of the FX premutation and its effect on public health and family planning, most FX premutation carriers are unaware of their condition. Since genetic testing for the premutation is resource intensive, it is not practical to screen individuals for FX premutation status using genetic testing. In a novel approach to phenotyping, we have utilized audio recordings and cognitive profiling assessed via self-administered questionnaires on 200 females. Machine-learning methods were developed to discriminate FX premutation carriers from mothers of children with autism spectrum disorders, the comparison group. By using a random forest classifier, FX premutation carriers could be identified in an automated fashion with high precision and recall (0.81 F1 score). Linguistic and cognitive phenotypes that were highly associated with FX premutation carriers were high language dysfluency, poor ability to organize material, and low self-monitoring. Our framework sets the foundation for computational phenotyping strategies to pre-screen large populations for this genetic variant with nominal costs.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-02682-4