An Optimal Allocation Strategy for Multienergy Networks Based on Double-Layer Nondominated Sorting Genetic Algorithms

Aiming at the problems of complex structures, variable loads, and fluctuation of power outputs of multienergy networks, this paper proposes an optimal allocation strategy of multienergy networks based on the double-layer nondominated sorting genetic algorithm, which can optimize the allocation of di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-11
Hauptverfasser: Ruan, Jiongming, Zheng, Wenguang, Zhou, Yuhao, Lin, Da, Mou, Min, Ke, Dongdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the problems of complex structures, variable loads, and fluctuation of power outputs of multienergy networks, this paper proposes an optimal allocation strategy of multienergy networks based on the double-layer nondominated sorting genetic algorithm, which can optimize the allocation of distributed generation (DG) and then improve the system economy. In this strategy, the multiobjective nondominated sorting genetic algorithm is adopted in both layers, and the second-layer optimization is based on the optimization result of the first layer. The first layer is based on the structure and load of the multienergy network. With the purpose of minimizing the active power loss and the node voltage offset, an optimization model of the multienergy network is established, which uses the multiobjective nondominated sorting genetic algorithm to solve the installation location and the capacity of DGs in multienergy networks. In the second layer, according to the optimization results of the first layer and the characteristics of different DGs (wind power generator, photovoltaic panel, microturbine, and storage battery), the optimization model of the multienergy network is established to improve the economy, reliability, and environmental benefits of multienergy networks. It uses the multiobjective nondominated sorting genetic algorithm to solve the allocation capacity of different DGs so as to solve the optimal allocation problem of node capacity in multienergy networks. The double-layer optimization strategy proposed in this paper greatly promotes the development of multienergy networks and provides effective guidance for the optimal allocation and reliable operation of multienergy networks.
ISSN:1076-2787
1099-0526
DOI:10.1155/2019/5367403