Visualizing group II intron dynamics between the first and second steps of splicing

Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-06, Vol.11 (1), p.2837-15, Article 2837
Hauptverfasser: Manigrasso, Jacopo, Chillón, Isabel, Genna, Vito, Vidossich, Pietro, Somarowthu, Srinivas, Pyle, Anna Marie, De Vivo, Marco, Marcia, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at different stages of catalysis. Here, we employ enzymatic assays, X-ray crystallography, and molecular simulations to resolve the spatiotemporal location and function of conformational changes occurring between the first and the second step of splicing. We show that the first residue of the highly-conserved catalytic triad is protonated upon 5’-splice-site scission, promoting a reversible structural rearrangement of the active site (toggling). Protonation and active site dynamics induced by the first step of splicing facilitate the progression to the second step. Our insights into the mechanism of group II intron splicing parallels functional data on the spliceosome, thus reinforcing the notion that these evolutionarily-related molecular machines share the same enzymatic strategy. Group II introns are self-splicing ribozymes. Here, the authors employ enzymatic assay, X-ray crystallography and molecular dynamics simulations to show that protonation of the group II intron catalytic triad plays an important role for the transition from the first to the second step of splicing.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16741-4