Test Investigation and Rule Analysis of Bearing Fault Diagnosis in Induction Motors
In this paper, a series of tests were conducted on the bearings of induction motors to investigate vibration signal analysis-based diagnosis of bearing faults, and a thorough analysis was also conducted. In the engineering field, the kurtosis coefficient of vibration acceleration and the root mean s...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-01, Vol.16 (2), p.699 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a series of tests were conducted on the bearings of induction motors to investigate vibration signal analysis-based diagnosis of bearing faults, and a thorough analysis was also conducted. In the engineering field, the kurtosis coefficient of vibration acceleration and the root mean square of vibration velocity, as well as resonant demodulated spectrum analysis of vibration acceleration, have been widely used for bearing fault diagnosis. These are integrated in almost any commercially available device for diagnosing bearing faults. However, the unsuitable use of these devices results in many false diagnoses. In light of this, they were selected as research objects and were investigated experimentally. In three induction motors, faults of different severity in the bearing outer race and cage were modeled for tests, and the corresponding results were used to evaluate the performance of the selected diagnosis methods. Some vague information in engineering was clarified, and some instructive rules were outlined to improve the bearing fault diagnosis performance. Taking the kurtosis coefficient of vibration acceleration (Ku) as an example, in engineering, Ku = 4 is generally taken as the diagnostic threshold of bearing faults. This means the following rule applies: if Ku ≤ 4, the bearing is healthy; otherwise, the bearing is faulty. However, the test results in this paper show that even if Ku ≤ 4, the bearing might be faulty; if Ku > 4, the bearing is indeed faulty. Therefore, the diagnostic rule should be improved as follows: if Ku > 4, the bearing is faulty (which can be assured), and if Ku ≤ 4, the status of the bearing is still undetermined. Thus, this paper can be helpful for researchers to gain an experimental understanding of the selected diagnosis methods and provides some improved rules on their use for reducing false diagnoses. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16020699 |