X-ray diffractive imaging of highly ionized helium nanodroplets

Finding the lowest energy configuration of  N  unit charges on a sphere, known as Thomson's problem, is a long-standing query which has only been studied via numerical simulations. We present its physical realization using multiply charged He nanodroplets. The charge positions are determined by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2022-06, Vol.4 (2), p.L022063, Article L022063
Hauptverfasser: Feinberg, Alexandra J., Laimer, Felix, Tanyag, Rico Mayro P., Senfftleben, Björn, Ovcharenko, Yevheniy, Dold, Simon, Gatchell, Michael, O’Connell-Lopez, Sean M. O., Erukala, Swetha, Saladrigas, Catherine A., Toulson, Benjamin W., Hoffmann, Andreas, Kamerin, Ben, Boll, Rebecca, De Fanis, Alberto, Grychtol, Patrik, Mazza, Tommaso, Montano, Jacobo, Setoodehnia, Kiana, Lomidze, David, Hartmann, Robert, Schmidt, Philipp, Ulmer, Anatoli, Colombo, Alessandro, Meyer, Michael, Möller, Thomas, Rupp, Daniela, Gessner, Oliver, Scheier, Paul, Vilesov, Andrey F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding the lowest energy configuration of  N  unit charges on a sphere, known as Thomson's problem, is a long-standing query which has only been studied via numerical simulations. We present its physical realization using multiply charged He nanodroplets. The charge positions are determined by x-ray coherent diffractive imaging with Xe as a contrast agent. In neutral droplets, filaments resulting from Xe atoms condensing on quantum vortices are observed. Unique to charged droplets, however, Xe clusters that condense on charges are distributed on the surface in lattice-like structures, introducing He droplets as experimental model systems for the study of Thomson's problem.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.4.L022063