Methodology to Detect Rail Corrugation from Vehicle On-Board Measurements by Isolating Effects from Other Sources of Excitation

Detecting track geometry and rail surface defects using on-board vehicle monitoring systems is a key issue for rail infrastructure managers to increase availability and reliability while reducing the costs associated with monitoring and maintenance. Rail corrugation is one of the most common rail su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-10, Vol.14 (19), p.8920
Hauptverfasser: De Rosa, Anna, Luber, Bernd, Müller, Gabor, Fuchs, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting track geometry and rail surface defects using on-board vehicle monitoring systems is a key issue for rail infrastructure managers to increase availability and reliability while reducing the costs associated with monitoring and maintenance. Rail corrugation is one of the most common rail surface defects which grows in almost all metro, conventional and high-speed lines. This paper focuses on the development of a methodology to detect rail corrugation using axle box acceleration measurements acquired on an in-service high-speed vehicle. The main purpose of the proposed methodology is to distinguish the effect of rail corrugation on the accelerations from the other excitations that can be observed in the same wavelength range. For this purpose, the accelerations are analysed by calculating the fast Fourier transform and the spectrogram. Based on the characteristics of each excitation, the effects of modes of vibration, resonances, bridges, switches, and wheel defects are identified. From the remaining effects, which have congruent characteristics, a hypothesis of rail corrugation is formulated. The hypothesis is consolidated with multibody dynamics simulations and by comparing the corrugation indicators provided by the railway infrastructure company.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14198920