Dysregulated Autophagy Leads to Oxidative Stress and Aberrant Expression of ABC Transporters in Women with Early Miscarriage
Early miscarriage (EMC) is a devastating obstetrical complication. ATP-binding cassette (ABC) transporters mediate cholesterol transfer across the placenta and enhance cell survival by effluxing substrates from target cells in the presence of stressors. Recent evidence reports an intricate interplay...
Gespeichert in:
Veröffentlicht in: | Antioxidants 2021-10, Vol.10 (11), p.1742 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Early miscarriage (EMC) is a devastating obstetrical complication. ATP-binding cassette (ABC) transporters mediate cholesterol transfer across the placenta and enhance cell survival by effluxing substrates from target cells in the presence of stressors. Recent evidence reports an intricate interplay between autophagy and ABC transporters. We hypothesized that dysregulated autophagy and oxidative stress (OS) in the placenta leads to abnormal expression of membrane transporters contributing to poor pregnancy survival in EMC. We determined mRNA and protein expression of autophagy genes (Beclin-1/Bcl-2/LC3I/LC3II/p62) and ABC transporters (ABCA1/ABCG1/ABCG2) in placentae from EMC patients (n = 20), term controls (n = 19), first trimester (n = 6), and term controls (n = 5) controls. Oxidative/antioxidant status and biomarkers of oxidative damage were evaluated in maternal serum and placentae from EMC and healthy controls. In EMC, placental expression of LC3II/LC3I as well as of the key autophagy regulatory proteins Beclin-1 and Bcl-2 were reduced, whereas p62 was increased. Both in the serum and placentae of EMC patients, total OS was elevated reflected by increased oxidative damage markers (8-OHdG/malondialdehyde/carbonyl formation) accompanied by diminished levels of total antioxidant status, catalase, and total glutathione. Furthermore, we found reduced ABCG1 and increased ABCG2 expression. These findings suggest that a decreased autophagy status triggers Bcl-2-dependent OS leading to macromolecule damage in EMC placentae. The decreased expression of ABCG1 contributes to reduced cholesterol export to the growing fetus. Increasing ABCG2 expression could represent a protective feedback mechanism under inhibited autophagy conditions. In conclusion, dysregulated autophagy combined with increased oxidative toxicity and aberrant expression of placental ABC transporters affects materno-fetal health in EMC. |
---|---|
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox10111742 |