Computationally efficient optimisation of elbow-type draft tube using neural network surrogates
This study aims to provide a comprehensive assessment of single-objective and multi-objective optimisation algorithms for the design of an elbow-type draft tube, as well as to introduce a computationally efficient optimisation workflow. The proposed workflow leverages deep neural network surrogates...
Gespeichert in:
Veröffentlicht in: | Alexandria engineering journal 2024-03, Vol.90, p.129-152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to provide a comprehensive assessment of single-objective and multi-objective optimisation algorithms for the design of an elbow-type draft tube, as well as to introduce a computationally efficient optimisation workflow. The proposed workflow leverages deep neural network surrogates trained on data obtained from numerical simulations. The use of surrogates allows for a more flexible and faster evaluation of novel designs. The success history-based adaptive differential evolution with linear reduction and the multi-objective evolutionary algorithm based on decomposition were identified as the best-performing algorithms and used to determine the influence of different objectives in the single-objective optimisation and their combined impact on the draft tube design in the multi-objective optimisation. The results for the single-objective algorithm are consistent with those of the multi-objective algorithm when the objectives are considered separately. Multi-objective approach, however, should typically be chosen, especially for computationally inexpensive surrogates. A multi-criteria decision analysis method was used to obtain optimal multi-objective results, showing an improvement of 1.5% and 17% for the pressure recovery factor and drag coefficient, respectively. The difference between the predictions and the numerical results is less than 0.5% for the pressure recovery factor and 3% for the drag coefficient. As the demand for renewable energy continues to increase, the relevance of data-driven optimisation workflows, as discussed in this study, will become increasingly important, especially in the context of global sustainability efforts.
•Efficient draft tube design workflow based on DNN surrogates introduced.•Design flexibility ensured through B-spline parameterisation.•MOEA/D and L-SHADE identified as the best-performing algorithms.•A single-objective optimisation approach can be viable depending on the goals.•Multi-objective optimisation provides measurable performance improvements. |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2024.01.062 |