Contaminant Risk and Social Vulnerability Associated with Crustacean Shellfish Harvest in the Highly Urbanized San Diego Bay, USA
People in coastal cities around the world harvest seafood from local bays despite well-documented health risks. In cities such as San Diego, California, USA, much information about contaminants and human consumption patterns exists for finfish but is largely lacking for shellfish. This study sought...
Gespeichert in:
Veröffentlicht in: | Environments (Basel, Switzerland) Switzerland), 2023-05, Vol.10 (6), p.91 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | People in coastal cities around the world harvest seafood from local bays despite well-documented health risks. In cities such as San Diego, California, USA, much information about contaminants and human consumption patterns exists for finfish but is largely lacking for shellfish. This study sought to better understand shellfish contamination risks and human vulnerability to inform management and advisories. In summer 2018 and winter 2019, we sampled crustaceans for chemical contaminants and anthropogenic debris and throughout the year surveyed people harvesting from three public fishing piers around San Diego Bay. Of the emerging contaminants found, pyrethroids, benzylbutyl phthalate, PFOS and anthropogenic debris were in differing concentrations in the muscle and viscera of the California spiny lobster and two species of crabs. Combined with previous metal and organic contaminant data from the lobster, 22 contaminants were detected with 5 exceeding consumption thresholds and 8 lacking defined thresholds. California spiny lobster was the main crustacean harvested from piers, attracting shellfishers from a range of ages, incomes, home locations and self-identified racial/ethnic groups. Consumption preferences (e.g., muscle or viscera) were non-discriminant, making lobster contamination a community-wide risk. More monitoring of emerging contaminants and different shellfish species (and tissues) of interest is recommended to capture the spatial and temporal dynamics of health risks, especially because the use of bivalves as sentinels may not reveal the same risks (e.g., PFAS, phosphate flame retardants). |
---|---|
ISSN: | 2076-3298 2076-3298 |
DOI: | 10.3390/environments10060091 |