Autophagy inhibition enhances Matrine derivative MASM induced apoptosis in cancer cells via a mechanism involving reactive oxygen species-mediated PI3K/Akt/mTOR and Erk/p38 signaling

In the quest for new anti-cancer drugs, the drug discovery process has shifted to screening of active ingredients in traditional eastern medicine. Matrine is an active alkaloid isolated from plants of the Sophora genus used in traditional Chinese herbal medicine that exhibits a wide spectrum of biol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cancer 2019-10, Vol.19 (1), p.949-949, Article 949
Hauptverfasser: Zou, Yuming, Sarem, Melika, Xiang, Shengnan, Hu, Honggang, Xu, Weidong, Shastri, V Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the quest for new anti-cancer drugs, the drug discovery process has shifted to screening of active ingredients in traditional eastern medicine. Matrine is an active alkaloid isolated from plants of the Sophora genus used in traditional Chinese herbal medicine that exhibits a wide spectrum of biological properties and has a potential as an anti-proliferative agent. In this study, we investigated the anticancer property of MASM, ([(6aS, 10S, 11aR, 11bR, 11cS)210-Methylamino-dodecahydro-3a, 7a-diaza-benzo (de)anthracene-8-thione]), a potent derivative of matrine. Four epithelial cancer cell lines representing the dominant cancers, namely: A549 (non-small-cell lung cancer cell line), MCF-7 and MDA-MB-231 (breast cancer cell lines), and Hela (cervical cancer cell line) were employed, and the mechanistic underpinning of MASM-induced apoptosis was investigated using flow cytometry, western blot and immunofluorescence. MASM, induced apoptosis via caspase 3 dependent and independent pathways, and autophagy in all the four cancer cell lines, but post-EMT (epithelial mesenchymal transition) cells showed greater sensitivity to MASM. Scavenging reactive oxygen species using N-acetylcysteine rescued all cancer cell lines from apoptosis and autophagy. Mechanistic analysis revealed that MASM induced autophagy involves inhibition of Akt signaling and the activation of Erk and p38 signaling, and inhibition of autophagy further enhanced the apoptosis induced by MASM. These results indicate that MASM possesses potency against cancer cells and modulating autophagy during MASM administration could be used to further enhance its therapeutic effects.
ISSN:1471-2407
1471-2407
DOI:10.1186/s12885-019-6199-7