Adapting a Dehazing System to Haze Conditions by Piece-Wisely Linearizing a Depth Estimator

Haze is the most frequently encountered weather condition on the road, and it accounts for a considerable number of car crashes occurring every year. Accordingly, image dehazing has garnered strong interest in recent decades. However, although various algorithms have been developed, a robust dehazin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-03, Vol.22 (5), p.1957
Hauptverfasser: Ngo, Dat, Lee, Seungmin, Kang, Ui-Jean, Ngo, Tri Minh, Lee, Gi-Dong, Kang, Bongsoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Haze is the most frequently encountered weather condition on the road, and it accounts for a considerable number of car crashes occurring every year. Accordingly, image dehazing has garnered strong interest in recent decades. However, although various algorithms have been developed, a robust dehazing method that can operate reliably in different haze conditions is still in great demand. Therefore, this paper presents a method to adapt a dehazing system to various haze conditions. Under this approach, the proposed method discriminates haze conditions based on the haze density estimate. The discrimination result is then leveraged to form a piece-wise linear weight to modify the depth estimator. Consequently, the proposed method can effectively handle arbitrary input images regardless of their haze condition. This paper also presents a corresponding real-time hardware implementation to facilitate the integration into existing embedded systems. Finally, a comparative assessment against benchmark designs demonstrates the efficacy of the proposed dehazing method and its hardware counterpart.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22051957