Direct Yaw-Moment Control Integrated with Wheel Slip Regulation for Heavy Commercial Road Vehicles

When a road vehicle is subjected to combined cornering and emergency braking, it potentially has a greater risk of wheel lock followed by loss of steerability and/or undesired yaw motion. While an Anti-lock Braking System (ABS) is mandatory in many countries to avoid wheel lock, more attention is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Patil, Harshal, Devika, K.B., Vivekanandan, Gunasekaran, Sivaram, Sriram, Subramanian, Shankar C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When a road vehicle is subjected to combined cornering and emergency braking, it potentially has a greater risk of wheel lock followed by loss of steerability and/or undesired yaw motion. While an Anti-lock Braking System (ABS) is mandatory in many countries to avoid wheel lock, more attention is required to its combined cornering and braking performance. This paper aims to design a Direct Yaw-Moment Controller (DYC) integrated with ABS to achieve vehicle directional stability for Heavy Commercial Road Vehicles (HCRVs). This study implements a robust reaching law-based sliding mode controller for DYC and ABS. The developed algorithm was evaluated in a Hardware-in-Loop (HiL) setup. The experimental results are compared for the integrated algorithm and standalone ABS algorithms. The proposed algorithm improved the Directional Performance Index (DPI) in the range of 29% to 84% over the open-loop behavior while maintaining vehicle stability. Moreover, it also improved the DPI in the range of 5% to 53% over standalone ABS in various emergency test cases.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3186981