Horadam Sequences and Tridiagonal Determinants

We consider a family of particular tridiagonal matrix determinants which can represent the general second-order linear recurrence sequences. These determinants can be changed to symmetric or skew-symmetric tridiagonal determinants. To evaluate the complex factorizations of any Horadam sequence, we e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-12, Vol.12 (12), p.1968
1. Verfasser: Chen, Kwang-Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a family of particular tridiagonal matrix determinants which can represent the general second-order linear recurrence sequences. These determinants can be changed to symmetric or skew-symmetric tridiagonal determinants. To evaluate the complex factorizations of any Horadam sequence, we evaluate the eigenvalues of some special tridiagonal matrices and their corresponding eigenvectors. We also use these determinant representations to obtain some formulas in these sequences.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12121968