Beyond conventional biomass valorisation: pyrolysis-derived products for biomedical applications

Biomass valorisation is conventionally associated with the production of green biofuels. However, this could extend beyond the conventional perception of biomass application into other domains such as medical sciences. Acid condensate (AC) obtained from pyrolysis promises a good potential for biomed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofuel research journal 2022-09, Vol.9 (3), p.1648-1658
Hauptverfasser: Mohd Hamzah, Mohd Amir Asyraf, Hasham, Rosnani, Nik Malek, Nik Ahmad Nizam, Hashim, Zanariah, Yahayu, Maizatulakmal, Abdul Razak, Fazira Ilyana, Zakaria, Zainul Akmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomass valorisation is conventionally associated with the production of green biofuels. However, this could extend beyond the conventional perception of biomass application into other domains such as medical sciences. Acid condensate (AC) obtained from pyrolysis promises a good potential for biomedical applications, notably for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, concentrated AC extract (CACE) obtained from microwave-assisted pyrolysis of palm kernel shells was fractionated, and the resulting fractions were pooled according to similar thin layer chromatography profiles into combined fractions (CFACs). CFACs were evaluated for total phenolic content, antioxidant level, cytotoxicity, and wound healing activities toward human skin fibroblast cells (HSF 1184). CFAC-3 showed the highest total phenolic content (624.98 ± 8.70 µg GAE/mg of sample) and antioxidant activities (DPPH IC50 of 29.47 ± 0.74 µg/mL, ABTS of 1247.13 ± 27.89 μg TE/mg sample, FRAP of 24.26 ± 0.71 mmol Fe(II)/mg sample, HFRS of 257.74 ± 1.74 µg/mL) compared to CACE (DPPH IC50 of 81.76 ± 2.81 µg/mL, ABTS of 816.95 ± 30.49 μg TE/mg sample, FRAP of 9.22 ± 0.66 mmol Fe(II)/mg sample, HFRS of 689.30 ± 36.00 µg/mL), no cytotoxic properties at ≤50 µg/mL, and significantly faster wound closure (at 1.25 µg/mL) compared to the control 12 h after treatment. The phosphorylation of the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) were upregulated, thus indicating that wound healing of CFAC-3 followed through this signalling pathway. To conclude, phenolic-rich CFAC-3 obtained from the pyrolysis of palm kernel shells demonstrated potential biomedical application as an alternative wound healing agent with high antioxidant and wound-healing activity. To the best of our knowledge, this was the first study to report on the wound healing activity of AC and its wound healing mechanism.
ISSN:2292-8782
2292-8782
DOI:10.18331/BRJ2022.9.3.2