Correlation between Patient‐Derived Xenograft Modeling and Prognosis in Osteosarcoma
Objective To retrospectively analyze and compare the relationship between the success rate of patient‐derived xenograft (PDX) modeling of osteosarcoma and prognosis (3‐year overall survival rate and disease‐free survival rate) and incidence of lung metastasis. Methods The sample group consisted of 5...
Gespeichert in:
Veröffentlicht in: | Orthopaedic surgery 2022-06, Vol.14 (6), p.1161-1166 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
To retrospectively analyze and compare the relationship between the success rate of patient‐derived xenograft (PDX) modeling of osteosarcoma and prognosis (3‐year overall survival rate and disease‐free survival rate) and incidence of lung metastasis.
Methods
The sample group consisted of 57 osteosarcoma patients with definite pathological diagnoses from Shanghai General Hospital from 2015–2017. PDX models in 57 patients were analyzed by retrospective analyses. Among the patients currently inoculated, 20 were tumorigenic in the PDX model, and 37 were nontumorigenic. According to the tumorigenicity of PDXs, the corresponding osteosarcoma patients were divided into two groups. The effects of clinically related indicators on the model were retrospectively compared. The patients were followed, and the 3‐year survival, 3‐year disease‐free survival (DFS), and lung metastasis rates were collected. The relationship between the modeling success and patient prognosis was investigated.
Results
In the chemotherapy‐treated group, the PDX modeling success rate was 17.4%, and in the nonchemotherapy group, the success rate was 47.1%. The success of PDX modeling was related to whether patients received chemotherapy. The success rate of PDX modeling is significantly reduced after receiving chemotherapy. The 3‐year overall survival rate of the PDX‐grafted group was 49.23%, and that of the PDX‐nongrafted group was 65.71%. There was a significant difference between the two groups, showing a strong negative correlation between the 3‐year survival rate and the success rate of the PDX model. The 3‐year disease‐free survival rate of the PDX‐grafted group was 29.54%. The 3‐year DFS of the PDX‐nongrafted group was 50.34%. There was a significant difference between the two groups. Lower grafted rates indicate a higher DFS rate. The incidence of lung metastasis in the PDX‐grafted group was 32.4%, and that in the nongrafted group was 13.1%. There was a significant difference between the two groups. The successful establishment of the PDX model indicates that patients are more likely to have lung metastases.
Conclusions
The success of PDX modeling often indicates poor prognosis (low 3‐year overall survival rate and disease‐free survival rate) and a greater possibility of lung metastasis. Therefore, PDX modeling in osteosarcoma patients can accurately predict the prognosis of patients and the risk of lung metastasis in advance to help us develop better therapeutic strategies.
Th |
---|---|
ISSN: | 1757-7853 1757-7861 |
DOI: | 10.1111/os.13211 |