Changes in structural and pigmentary colours in response to cold stress in Polyommatus icarus butterflies

While numerous papers have investigated the effects of thermal stress on the pigmentary colours of butterfly wings, such studies regarding structural colours are mostly lacking, despite the important role they play in sexual communication. To gain insight into the possible differences between the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-04, Vol.7 (1), p.1118-12, Article 1118
Hauptverfasser: Kertész, Krisztián, Piszter, Gábor, Horváth, Zsolt Endre, Bálint, Zsolt, Biró, László Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While numerous papers have investigated the effects of thermal stress on the pigmentary colours of butterfly wings, such studies regarding structural colours are mostly lacking, despite the important role they play in sexual communication. To gain insight into the possible differences between the responses of the two kinds of colouration, we investigated the effects of prolonged cold stress (cooling at 5 °C for up to 62 days) on the pupae of Polyommatus icarus butterflies. The wing surfaces coloured by photonic crystal-type nanoarchitectures (dorsal) and by pigments (ventral) showed markedly different behaviours. The ventral wing surfaces exhibited stress responses proportional in magnitude to the duration of cooling and showed the same trend for all individuals, irrespective of their sex. On the dorsal wing surface of the males, with blue structural colouration, a smaller magnitude response was found with much more pronounced individual variations, possibly revealing hidden genetic variations. Despite the typical, pigmented brown colour of the dorsal wing surface of the females, all cooled females exhibited a certain degree of blue colouration. UV-VIS spectroscopy, optical microscopy, and scanning and transmission electron microscopy were used to evaluate the magnitude and character of the changes induced by the prolonged cold stress.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-01273-7