High Manganese Content of Lipid NanoMn (LNM) by Microfluidic Technology for Enhancing Anti-Tumor Immunity

Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2024-04, Vol.16 (4), p.556
Hauptverfasser: Sun, Jiawei, Gong, Jingjing, Gong, Lidong, Zhu, Chuanda, Li-Yang, Longhao, Wang, Jingya, Yang, Yuanyuan, Zhang, Shiming, Liu, Silu, Fu, Ji-Jun, Xu, Pengcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technology to design and develop an innovative preparation process, resulting in the creation of a novel manganese lipid nanoparticle (LNM). The lipid manganese nanoparticle produced in this process boasts a high manganese payload, excellent stability, the capacity for large-scale production, and high batch repeatability. LNM has effectively demonstrated the ability to activate the cGAS-STING signaling pathway, induce the production of pro-inflammatory cytokines, and inhibit tumor development. Notably, LNM does not require combination chemotherapy drugs or other immune activators. Therefore, LNM presents a safe, straightforward, and efficient strategy for anti-tumor immune activation, with the potential for scalable production.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics16040556