Predicting river water height using deep learning-based features

The paper presents the river height prediction model using real-world historical sensor data such as rainfall, cumulative rainfall, and river water heights. The study evaluates using a Support Vector Regression, a Long Short-Term Memory, and a combination of a Long Short-Term Memory as the feature e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2022-12, Vol.8 (4), p.588-594
Hauptverfasser: Borwarnginn, Punyanuch, Haga, Jason H., Kusakunniran, Worapan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents the river height prediction model using real-world historical sensor data such as rainfall, cumulative rainfall, and river water heights. The study evaluates using a Support Vector Regression, a Long Short-Term Memory, and a combination of a Long Short-Term Memory as the feature extraction and a support vector regression. Through experiments, various future predictions are tested, including a few hours or a day. As expected, RNN achieved the lowest error, but it could not capture rapid changes in river height levels. In comparison, the LSTM-SVR can better represent rapid transient changes in the data by using nonlinear kernels.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2022.03.012