Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes
Stimulated emission depletion (STED) microscopy is a powerful diffraction-unlimited technique for fluorescence imaging. Despite its rapid evolution, STED fundamentally suffers from high-intensity light illumination, sophisticated probe-defined laser schemes, and limited photon budget of the probes....
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-05, Vol.13 (1), p.2843-10, Article 2843 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stimulated emission depletion (STED) microscopy is a powerful diffraction-unlimited technique for fluorescence imaging. Despite its rapid evolution, STED fundamentally suffers from high-intensity light illumination, sophisticated probe-defined laser schemes, and limited photon budget of the probes. Here, we demonstrate a versatile strategy, stimulated-emission induced excitation depletion (STExD), to deplete the emission of multi-chromatic probes using a single pair of low-power, near-infrared (NIR), continuous-wave (CW) lasers with fixed wavelengths. With the effect of cascade amplified depletion in lanthanide upconversion systems, we achieve emission inhibition for a wide range of emitters (
e.g
., Nd
3+
, Yb
3+
, Er
3+
, Ho
3+
, Pr
3+
, Eu
3+
, Tm
3+
, Gd
3+
, and Tb
3+
) by manipulating their common sensitizer, i.e., Nd
3+
ions, using a 1064-nm laser. With NaYF
4
:Nd nanoparticles, we demonstrate an ultrahigh depletion efficiency of 99.3 ± 0.3% for the 450 nm emission with a low saturation intensity of 23.8 ± 0.4 kW cm
−2
. We further demonstrate nanoscopic imaging with a series of multi-chromatic nanoprobes with a lateral resolution down to 34 nm, two-color STExD imaging, and subcellular imaging of the immunolabelled actin filaments. The strategy expounded here promotes single wavelength-pair nanoscopy for multi-chromatic probes and for multi-color imaging under low-intensity-level NIR-II CW laser depletion.
The authors introduce stimulated-emission induced excitation depletion (STExD) nanoscopy using a single pair of low-power, near-infrared, continue-wave lasers. Emission of multichromatic probes is inhibited by cascade amplified depletion in lanthanide upconversion systems induced by manipulating their common sensitizer. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-30114-z |