The Australian Earth System Model: ACCESS-ESM1.5

The Australian Community Climate and Earth System Simulator (ACCESS) has been extended to include land and ocean carbon cycle components to form an Earth System Model (ESM). The current version, ACCESS-ESM1.5, has been mainly developed to enable Australia to participate in the Coupled Model Intercom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Southern Hemisphere earth systems science 2020-01, Vol.70 (1), p.193-214
Hauptverfasser: Ziehn, Tilo, Chamberlain, Matthew A., Law, Rachel M., Lenton, Andrew, Bodman, Roger W., Dix, Martin, Stevens, Lauren, Wang, Ying-Ping, Srbinovsky, Jhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Australian Community Climate and Earth System Simulator (ACCESS) has been extended to include land and ocean carbon cycle components to form an Earth System Model (ESM). The current version, ACCESS-ESM1.5, has been mainly developed to enable Australia to participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6) with an ESM version. Here we describe the model components and changes to the previous version, ACCESS-ESM1. We use the 500-year pre-industrial control run to highlight the stability of the physical climate and the carbon cycle. The long spin-up, negligible drift in temperature and small pre-industrial net carbon fluxes (0.02 and 0.08 PgC year−1 for land and ocean respectively) highlight the suitability of ACCESS-ESM1.5 to explore modes of variability in the climate system and coupling to the carbon cycle. The physical climate and carbon cycle for the present day have been evaluated using the CMIP6 historical simulation by comparing against observations and ACCESS-ESM1. Although there is generally little change in the climate simulation from the earlier model, many aspects of the carbon simulation are improved. An assessment of the climate response to CO2 forcing indicates that ACCESS-ESM1.5 has an equilibrium climate sensitivity of 3.87°C.
ISSN:2206-5865
2206-5865
DOI:10.1071/ES19035