Multidrug-Resistant Staphylococcus sp. and Enterococcus sp. in Municipal and Hospital Wastewater: A Longitudinal Study

The objective of the study was to detect multidrug-resistant sp. and sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2024-03, Vol.12 (4), p.645
Hauptverfasser: Velazquez-Meza, Maria Elena, Galarde-López, Miguel, Cornejo-Juárez, Patricia, Carrillo-Quiroz, Berta Alicia, Velázquez-Acosta, Consuelo, Bobadilla-Del-Valle, Miriam, Ponce-de-León, Alfredo, Alpuche-Aranda, Celia Mercedes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the study was to detect multidrug-resistant sp. and sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospital and two community wastewater treatment plants (WWTPs). In each season of the year, two treated and two raw wastewater samples were collected in duplicate at each of the WWTPs studied. Screening and presumptive identification of staphylococci and enterococci was performed using chromoagars, and identification was performed with the Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS ). Antimicrobial susceptibility was performed using VITEK 2 automated system. There were 56 wastewater samples obtained during the study period. A total of 182 sp. and 248 sp. were identified. The highest frequency of sp. isolation was in spring and summer (n = 129, 70.8%), and for sp. it was in autumn and winter (n = 143, 57.7%). Sixteen isolates of sp. and sixty-three of sp. persisted during WWTP treatments. Thirteen species of staphylococci and seven species of enterococci were identified. Thirty-one isolates of sp. and ninety-four of sp. were multidrug-resistant. Resistance to vancomycin (1.1%), linezolid (2.7%), and daptomycin (8.2%/10.9%%), and a lower susceptibility to tigecycline (2.7%), was observed. This study evidences the presence of sp. and sp. resistant to antibiotics of last choice of clinical treatment, in community and hospital wastewater and their ability to survive WWTP treatment systems.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms12040645