A New Proof for a Result on the Inclusion Chromatic Index of Subcubic Graphs
Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index of G, denoted by χ⊂′(G), is the minimum number of colors needed to properly color the edges of G so that the set of colors incident with any vertex is not contained in the set of colors incident to any of its nei...
Gespeichert in:
Veröffentlicht in: | Axioms 2022-01, Vol.11 (1), p.33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index of G, denoted by χ⊂′(G), is the minimum number of colors needed to properly color the edges of G so that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. We prove that every connected subcubic graph G with δ(G)≥2 either has an inclusion chromatic index of at most six, or G is isomorphic to K^2,3, where its inclusion chromatic index is seven. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms11010033 |