Preliminary assessment for the use of VORIS as a tool for rapid lava flow simulation at Goma Volcano Observatory, Democratic Republic of the Congo

Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga volcanic province in the Democratic Republic of the Congo, with over 1 million inhabitants, has to cope permanently with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards and earth system sciences 2015-10, Vol.15 (10), p.2391-2400
Hauptverfasser: Syavulisembo, A. M., Havenith, H.-B., Smets, B., d'Oreye, N., Marti, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga volcanic province in the Democratic Republic of the Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1–4 years – mostly in the form of lava flows – at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than 2 years, and produced lava flows sometimes reaching distances of over 20 km from the volcano. Though most of the lava flows did not reach urban areas, only impacting the forests of the endangered Virunga National Park, some of them related to distal flank eruptions affected villages and roads. In order to identify a useful tool for lava flow hazard assessment at Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling the lava flow propagation. We tested different parameters and digital elevation models (DEM) – SRTM1, SRTM3, and ASTER GDEM – to evaluate the sensitivity of the models to changes in input parameters of VORIS 2.0.1. Simulations were tested against the known lava flows and topography from the 2010 Nyamulagira eruption. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested when input parameters are appropriately chosen. In practice, these results will be used by GVO to calibrate VORIS for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.
ISSN:1684-9981
1561-8633
1684-9981
DOI:10.5194/nhess-15-2391-2015