Multi-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept

This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable energy and environment 2016-02, Vol.3 (1), p.43-51
Hauptverfasser: Vajiheh Sabeti, Fateme Ahmadi Boyaghchi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, and evaporator temperature are selected as the decision variables. Three objective functions, namely the energetic efficiency, exergetic efficiency and cost rate of products are selected for optimization. NSGA-II and MOPSO are employed and compared, to achieve the final solutions in the multi-objective optimization of the system operating. It is found that the values of the energetic and exergetic efficiencies increase within 27.7% and 26.1%, respectively and the cost rate of products decreases by about 32.7% with respect to base case.
ISSN:2423-5547
2423-7469
DOI:10.30501/jree.2016.70077