Evaluation of Osteoblastic Differentiation Induced by Microtextured Titanium Surface Produced by Laser Metal Fusion 3D Printing
In this study, we hypothesized that microtextured titanium (Ti) surfaces produced by laser metal fusion (LMF) 3D printing may play an important role in osteoblastic differentiation of mesenchymal stem cells (MSCs). For that, MSCs derived from mouse bone marrow were cultured on Ti discs produced in t...
Gespeichert in:
Veröffentlicht in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2024-01, Vol.27 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we hypothesized that microtextured titanium (Ti) surfaces produced by laser metal fusion (LMF) 3D printing may play an important role in osteoblastic differentiation of mesenchymal stem cells (MSCs). For that, MSCs derived from mouse bone marrow were cultured on Ti discs produced in two different ways: microtextured produced by acid etched (Ti-Ac, control group) and microtextured produced by LMF 3D printing (Ti-3D-LMF, test group), in which it was evaluated: (1) cell proliferation, (2) alkaline phosphatase activity and (3) extracellular matrix mineralization. The results showed that both groups allowed cell proliferation over time (p |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2023-0448 |