On nonlocal boundary value problem for the equation of motion of a homogeneous elastic beam with pinned-pinned ends
In the current paper, in the domain $D=\{(t,x): t\in(0,T), x\in(0,L)\}$ we investigate the boundary value problem for the equation of motion of a homogeneous elastic beam $$ u_{tt}(t,x)+a^{2}u_{xxxx}(t,x)+b u_{xx}(t,x)+c u(t,x)=0, $$ where $a,b,c \in \mathbb{R}$, $b^22$, then for almost all (with r...
Gespeichert in:
Veröffentlicht in: | Karpats'kì matematinì publìkacìï 2018-07, Vol.10 (1), p.105-113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the current paper, in the domain $D=\{(t,x): t\in(0,T), x\in(0,L)\}$ we investigate the boundary value problem for the equation of motion of a homogeneous elastic beam $$ u_{tt}(t,x)+a^{2}u_{xxxx}(t,x)+b u_{xx}(t,x)+c u(t,x)=0, $$ where $a,b,c \in \mathbb{R}$, $b^22$, then for almost all (with respect to Lebesgue measure in $\mathbb{R}$) numbers $a$ exists a unique solution $u\in\mathbf{C}^{\,2}([0,T];\mathbf{H}_{q})$ of the problem considered. |
---|---|
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.10.1.105-113 |