Polyethersulfone Mats Functionalized with Porphyrin for Removal of Para-nitroaniline from Aqueous Solution

The dispersion of para-nitroaniline (p-NA) in water poses a threat to the environment and human health. Therefore, the development of functional adsorbents to remove this harmful compound is crucial to the implementation of wastewater purification strategies, and electrospun mats represent a versati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2019-09, Vol.24 (18), p.3344
Hauptverfasser: Gangemi, Chiara Maria Antonietta, Iudici, Mario, Spitaleri, Luca, Randazzo, Rosalba, Gaeta, Massimiliano, D'Urso, Alessandro, Gulino, Antonino, Purrello, Roberto, Fragalà, Maria Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dispersion of para-nitroaniline (p-NA) in water poses a threat to the environment and human health. Therefore, the development of functional adsorbents to remove this harmful compound is crucial to the implementation of wastewater purification strategies, and electrospun mats represent a versatile and cost-effective class of materials that are useful for this application. In the present study, we tested the ability of some polyethersulfone (PES) nanofibers containing adsorbed porphyrin molecules to remove p-NA from water. The functional mats in this study were obtained by two different approaches based on fiber impregnation or doping. In particular, meso-tetraphenyl porphyrin (H TPP) or zinc(II) meso-tetraphenyl porphyrin (ZnTPP) were immobilized on the surface of PES fiber mats by dip-coating or added to the PES electrospun solution to obtain porphyrin-doped PES mats. The presence of porphyrins on the fiber surfaces was confirmed by UV-Vis spectroscopy, fluorescence measurements, and XPS analysis. p-NA removal from water solutions was spectrophotometrically detected and evaluated.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24183344