Acetylation of carboxyl-terminal domain selectively regulates p53-mediated gene transcriptionn
Objective To explore whether carboxyl-terminal domain (CTD) acetylation contributes to selectively regulating p53-mediated transcription of a subset of genes. Methods Based on p53-null lung cancer cell line H1299, a pair of inducible cell strains expressing the wildtype p53 (p53-WT) and the CTD acet...
Gespeichert in:
Veröffentlicht in: | Ji chu yi xue yu lin chuang = Jichu yixue yu linchuang = Basic medical sciences and clinics 2021-11, Vol.41 (11), p.1577-1582 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective To explore whether carboxyl-terminal domain (CTD) acetylation contributes to selectively regulating p53-mediated transcription of a subset of genes. Methods Based on p53-null lung cancer cell line H1299, a pair of inducible cell strains expressing the wildtype p53 (p53-WT) and the CTD acetylation-mimicking p53 (p53-6KQ) were constructal, respectively, and a response to doxycycline (Doxy) treatment was generated. RNA-sequencing was applied to analyze the changes of the transcriptional profiles regulated by p53-WT or p53-6KQ. Bio-informatic analysis was performed to annotate p53-6KQ-specific candidates, and their potential biological functions. Results The p53-inducible cell strains were successfully established. 306 differentially expressed genes that were specifically regulated by p53-6KQ were identified. These genes were functionally enriched in the biological processes involving in cell fate determination, transcription, neuron development and tumor necrosis factor signaling pathway. Conclusions T |
---|---|
ISSN: | 1001-6325 |