Acetylation of carboxyl-terminal domain selectively regulates p53-mediated gene transcriptionn

Objective To explore whether carboxyl-terminal domain (CTD) acetylation contributes to selectively regulating p53-mediated transcription of a subset of genes. Methods Based on p53-null lung cancer cell line H1299, a pair of inducible cell strains expressing the wildtype p53 (p53-WT) and the CTD acet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji chu yi xue yu lin chuang = Jichu yixue yu linchuang = Basic medical sciences and clinics 2021-11, Vol.41 (11), p.1577-1582
1. Verfasser: YAN Xiao-jun, XU Wen-bin, WANG Dong-lai
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective To explore whether carboxyl-terminal domain (CTD) acetylation contributes to selectively regulating p53-mediated transcription of a subset of genes. Methods Based on p53-null lung cancer cell line H1299, a pair of inducible cell strains expressing the wildtype p53 (p53-WT) and the CTD acetylation-mimicking p53 (p53-6KQ) were constructal, respectively, and a response to doxycycline (Doxy) treatment was generated. RNA-sequencing was applied to analyze the changes of the transcriptional profiles regulated by p53-WT or p53-6KQ. Bio-informatic analysis was performed to annotate p53-6KQ-specific candidates, and their potential biological functions. Results The p53-inducible cell strains were successfully established. 306 differentially expressed genes that were specifically regulated by p53-6KQ were identified. These genes were functionally enriched in the biological processes involving in cell fate determination, transcription, neuron development and tumor necrosis factor signaling pathway. Conclusions T
ISSN:1001-6325