Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory
For fractional derivatives and time-fractional differential equations, we construct a framework on the basis of operator theory in fractional Sobolev spaces. Our framework provides a feasible extension of the classical Caputo and the Riemann–Liouville derivatives within Sobolev spaces of fractional...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-03, Vol.10 (5), p.698 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For fractional derivatives and time-fractional differential equations, we construct a framework on the basis of operator theory in fractional Sobolev spaces. Our framework provides a feasible extension of the classical Caputo and the Riemann–Liouville derivatives within Sobolev spaces of fractional orders, including negative ones. Our approach enables a unified treatment for fractional calculus and time-fractional differential equations. We formulate initial value problems for fractional ordinary differential equations and initial boundary value problems for fractional partial differential equations to prove well-posedness and other properties. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10050698 |