Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory

For fractional derivatives and time-fractional differential equations, we construct a framework on the basis of operator theory in fractional Sobolev spaces. Our framework provides a feasible extension of the classical Caputo and the Riemann–Liouville derivatives within Sobolev spaces of fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-03, Vol.10 (5), p.698
1. Verfasser: Yamamoto, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For fractional derivatives and time-fractional differential equations, we construct a framework on the basis of operator theory in fractional Sobolev spaces. Our framework provides a feasible extension of the classical Caputo and the Riemann–Liouville derivatives within Sobolev spaces of fractional orders, including negative ones. Our approach enables a unified treatment for fractional calculus and time-fractional differential equations. We formulate initial value problems for fractional ordinary differential equations and initial boundary value problems for fractional partial differential equations to prove well-posedness and other properties.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10050698