Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors

One challenge for synthetic biologists is the predictable tuning of genetic circuit regulatory components to elicit desired outputs. Gene expression driven by ligand-inducible transcription factor systems must exhibit the correct ON and OFF characteristics: appropriate activation and leakiness in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-01, Vol.9 (1), p.64-64, Article 64
Hauptverfasser: Chen, Ye, Ho, Joanne M. L., Shis, David L., Gupta, Chinmaya, Long, James, Wagner, Daniel S., Ott, William, Josić, Krešimir, Bennett, Matthew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One challenge for synthetic biologists is the predictable tuning of genetic circuit regulatory components to elicit desired outputs. Gene expression driven by ligand-inducible transcription factor systems must exhibit the correct ON and OFF characteristics: appropriate activation and leakiness in the presence and absence of inducer, respectively. However, the dynamic range of a promoter (i.e., absolute difference between ON and OFF states) is difficult to control. We report a method that tunes the dynamic range of ligand-inducible promoters to achieve desired ON and OFF characteristics. We build combinatorial sets of AraC-and LasR-regulated promoters containing −10 and −35 sites from synthetic and Escherichia coli promoters. Four sequence combinations with diverse dynamic ranges were chosen to build multi-input transcriptional logic gates regulated by two and three ligand-inducible transcription factors (LacI, TetR, AraC, XylS, RhlR, LasR, and LuxR). This work enables predictable control over the dynamic range of regulatory components. For synthetic gene circuits to behave as designed, ligand-inducible promoters should display predictable ON/OFF characteristics. Here the authors design multi-input hybrid promoters to build transcriptional logic gates.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-02473-5