Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement

Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology and Precision Engineering 2018-12, Vol.1 (4), p.205-217
Hauptverfasser: Shi, Haosen, Song, Youjian, Li, Runmin, Li, Yuepeng, Cao, Hui, Tian, Haochen, Liu, Bowen, Chai, Lu, Hu, Minglie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to high-precision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
ISSN:1672-6030
2589-5540
2589-5540
DOI:10.1016/j.npe.2018.12.002