One-Pot Solvothermal Synthesis of Highly Emissive, Sodium-Codoped, LaF₃ and BaLaF₅ Core-Shell Upconverting Nanocrystals
We report a one-pot solvothermal synthesis of sub-10 nm, dominant ultraviolet (UV) emissive upconverting nanocrystals (UCNCs), based on sodium-codoped LaF₃ and BaLaF₅ (0.5%Tm; 20%Yb) and their corresponding core@shell derivatives. Elemental analysis shows a Na-codopant in these crystal systems of ~2...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2014-01, Vol.4 (1), p.69-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a one-pot solvothermal synthesis of sub-10 nm, dominant ultraviolet (UV) emissive upconverting nanocrystals (UCNCs), based on sodium-codoped LaF₃ and BaLaF₅ (0.5%Tm; 20%Yb) and their corresponding core@shell derivatives. Elemental analysis shows a Na-codopant in these crystal systems of ~20% the total cation content; X-ray diffraction (XRD) data indicate a shift in unit cell dimensions consistent with these small codopant ions. Similarly, X-ray photoelectron spectroscopic (XPS) analysis reveals primarily substitution of Na⁺ for La
ions (97% of total Na⁺ codopant) in the crystal system, and interstitial Na⁺ (3% of detected Na⁺) and La
(3% of detected La
) present in (Na)LaF₃ and only direct substitution of Na⁺ for Ba
in Ba(Na)LaF₅. In each case, XPS analysis of La 3d lines show a decrease in binding energy (0.08-0.25 eV) indicating a reduction in local crystal field symmetry surrounding rare earth (R.E.
) ions, permitting otherwise disallowed R.E. UC transitions to be enhanced. Studies that examine the impact of laser excitation power upon luminescence intensity were conducted over 2.5-100 W/cm² range to elucidate UC mechanisms that populate dominant UV emitting states. Low power saturation of Tm
³F₃ and ³H₄ states was observed and noted as a key initial condition for effective population of the ¹D₂ and ¹I₆ UV emitting states, via Tm-Tm cross-relaxation. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano4010069 |