Recent Advances in Designing Adeno-Associated Virus-Based Vaccines Against Viral Infections

Over 80% of the world's deadliest pandemics are caused by viral infections, and vaccination remains the most effective way to prevent these infections from spreading. Since the discovery of the first vaccine over two centuries ago, several vaccine design technologies have been developed. Next-g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2024-10, Vol.16 (11), p.1360
Hauptverfasser: Mnyandu, Njabulo, Jacobs, Ridhwaanah, Arbuthnot, Patrick, Maepa, Mohube Betty
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over 80% of the world's deadliest pandemics are caused by viral infections, and vaccination remains the most effective way to prevent these infections from spreading. Since the discovery of the first vaccine over two centuries ago, several vaccine design technologies have been developed. Next-generation vaccines, based on mRNA and viral vector technologies, have recently emerged as alternatives to traditional vaccines. Adenoviral vector-based vaccines against coronavirus disease 2019 have demonstrated a more sustained antibody response as compared to mRNA vaccines. However, this has not been without complications, with a few cases of severe adverse events identified in vaccinated individuals, and the underlying mechanism is the subject of intense investigation. Adeno-associated viral vectors induce a weaker cellular immune response compared to adenoviral vectors, and it is mainly for this reason that there has been a diminished interest in exploring them as a vaccine platform until recently. This review will discuss recent developments and the potential of adeno-associated viral vectors as anti-viral vaccines.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics16111360