Antagonistic effect of nano-selenium on hepatocyte apoptosis induced by DEHP via PI3K/AKT pathway in chicken liver
Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer which is mainly used as a kind of plastic additive to increase the flexibility of plastic products. Given the widespread use of plastic products, DEHP, as a ubiquitous artificial pollutant, are widely present in the environment. In addition,...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2021-07, Vol.218, p.112282-112282, Article 112282 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer which is mainly used as a kind of plastic additive to increase the flexibility of plastic products. Given the widespread use of plastic products, DEHP, as a ubiquitous artificial pollutant, are widely present in the environment. In addition, DEHP could cause biological damage in various organs through oxidative stress. Nano-Selenium, a novel form of selenium, has a wide variety of biomedical applications as an antioxidant, anticancer and anti-inflammatory agent. Nevertheless, researches on the toxicity of DEHP in chicken hepatocyte lines is insufficient. In particular, researches on the interaction between DEHP and nano-selenium is insufficient in chicken cell. Therefore, the innovation of this study is to explore the theoretical mechanism of DEHP toxicity in hepatocytes and the antagonistic effect of nano-selenium on a series of damage in chicken hepatocytes caused by DEHP. Our results showed that, after DEHP exposure, oxidative stress levels in hepatocytes increased, and the mRNA and protein levels of apoptosis-related genes p53, Capsase9, Caspase3 and Bax increased significantly except Bcl-2. The protein levels of apoptosis markers cleaved-Caspase9 and cleaved-Caspase3 also increased significantly. Moreover, the result of TUNEL assay also showed that the level of apoptotic cells increased after DEHP exposure. Meanwhile, the mRNA and protein levels of PI3K, AKT and p-AKT decreased. Therefore, DEHP is able to enhance the degree of oxidative damage and apoptosis of chicken liver cells. Nevertheless, the addition of nano-selenium can reverse the above changes. Experimental results revealed that nano-selenium antagonizes the toxic effects of DEHP via the PI3K/AKT pathway.
[Display omitted]
•DEHP induced oxidative stress and apoptosis in chicken liver.•Nano-selenium antagonized oxidative stress and apoptosis induced by DEHP.•Nano-selenium antagonized DEHP induced apoptosis via PI3K / AKT pathway. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2021.112282 |