Investigation of Mineral Carbonation with Direct Bubbling into Concrete Sludge

Mineral carbonation, which is CO2 fixation through a carbonation reaction using alkaline earth metals, is being investigated as a carbon capture and utilization method to reduce CO2 atmospheric emissions. Concrete sludge is an alkali waste material from the concrete industry and contains abundant ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2021-06, Vol.6 (24), p.15564-15571
Hauptverfasser: Abe, Masahiro, Tanaka, Shunsuke, Noguchi, Miyuki, Yamasaki, Akihiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mineral carbonation, which is CO2 fixation through a carbonation reaction using alkaline earth metals, is being investigated as a carbon capture and utilization method to reduce CO2 atmospheric emissions. Concrete sludge is an alkali waste material from the concrete industry and contains abundant calcium components. We investigated the applicability of concrete sludge for mineral carbonation. In this study, gas containing CO2 was bubbled through the model concrete sludge solution and the effects of the solid–liquid ratio, bubbling time, gas flow rate, and the partial pressure of CO2 on the CO2 fixation ratio and fixation rate were investigated. The CO2 fixation ratio decreased with increasing CO2 bubbling time, CO2 flow rate, and CO2 partial pressure. The CO2 fixation rate increased with increasing CO2 flow rate and CO2 partial pressure. The formation of calcite, a form of calcium carbonate, was confirmed.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c04758