Intracellular Metabolites in Marine Microorganisms during an Experiment Evaluating Microbial Mortality

Metabolomics is a tool with immense potential for providing insight into the impact of biological processes on the environment. Here, we used metabolomics methods to characterize intracellular metabolites within marine microorganisms during a manipulation experiment that was designed to test the imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolites 2020-03, Vol.10 (3), p.105
Hauptverfasser: Longnecker, Krista, Kujawinski, Elizabeth B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metabolomics is a tool with immense potential for providing insight into the impact of biological processes on the environment. Here, we used metabolomics methods to characterize intracellular metabolites within marine microorganisms during a manipulation experiment that was designed to test the impact of two sources of microbial mortality, protozoan grazing and viral lysis. Intracellular metabolites were analyzed with targeted and untargeted mass spectrometry methods. The treatment with reduced viral mortality showed the largest changes in metabolite concentrations, although there were organic compounds that shifted when the impact of protozoan grazers was reduced. Intracellular concentrations of guanine, phenylalanine, glutamic acid, and ectoine presented significant responses to changes in the source of mortality. Unexpectedly, variability in metabolite concentrations were not accompanied by increases in microbial abundance which indicates that marine microorganisms altered their internal organic carbon stores without changes in biomass or microbial growth. We used Weighted Correlation Network Analysis (WGCNA) to identify correlations between the targeted and untargeted mass spectrometry data. This analysis revealed multiple unknown organic compounds were correlated with compatible solutes, also called osmolytes or chemical chaperones, which emphasizes the dominant role of compatible solutes in marine microorganisms.
ISSN:2218-1989
2218-1989
DOI:10.3390/metabo10030105