Improved mechanical properties of graphene-modified basalt fibre–epoxy composites
In industrial applications, the potential of basalt fibre-reinforced polymer (BFRP) composite pipes as a compelling alternative to glass and carbon fibre-reinforced composite pipes is recognized. Their high recyclability makes them a viable option for aerospace, marine, and automotive applications....
Gespeichert in:
Veröffentlicht in: | Nanotechnology reviews (Berlin) 2024-07, Vol.13 (1), p.182-7 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In industrial applications, the potential of basalt fibre-reinforced polymer (BFRP) composite pipes as a compelling alternative to glass and carbon fibre-reinforced composite pipes is recognized. Their high recyclability makes them a viable option for aerospace, marine, and automotive applications. In this study, a comparison is made between the mechanical properties of virgin basalt–epoxy composite pipes and graphene-modified counterparts. To conduct the experiments, pipe section specimens were prepared using a flex grinding machine. Graphene nanoplatelets (GnPs), serving as an exceptional reinforcing material, were uniformly incorporated into the basalt–epoxy composites at a specific concentration. The inclusion of these nanoplatelets resulted in significant changes in mechanical stiffness compared to the virgin basalt–epoxy composite pipes. A series of tests, including uniaxial tensile, Charpy impact, microhardness, Shore D hardness, uniaxial 3-point bending, and dynamic displacement transmissibility tests, were carried out to assess the mechanical properties of both graphene-reinforced and virgin basalt–epoxy pipes. The findings indicated that the pure basalt–epoxy composite exhibited lower ductility compared to the graphene basalt–epoxy composites after undergoing uniaxial mechanical loading. Non-destructive dynamic mechanical vibration testing was used to investigate the complex mechanical response of the materials under examination. The observed complex frequency-dependent responses reflected the mutual ductile/brittle mechanical performance of the developed composites. |
---|---|
ISSN: | 2191-9097 2191-9097 |
DOI: | 10.1515/ntrev-2024-0052 |