A Part-Metric-Related Inequality Chain and Application to the Stability Analysis of Difference Equation
We find a new part-metric-related inequality of the form min{a i,1/ai:1i5} ((1+w)a1a2a3+a4+ a5)/(a1a2+a1a3+a2a3+wa4a5) max{a i,1/ai:1i5}, where 1 w 2. We then apply this result to show that c=1 is a globally asymptotically stable equilibrium of the rational difference equation xn=(xn-1+xn-2+(1+w)xn-...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2007-01, Vol.2007, p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We find a new part-metric-related inequality of the form min{a i,1/ai:1i5} ((1+w)a1a2a3+a4+ a5)/(a1a2+a1a3+a2a3+wa4a5) max{a i,1/ai:1i5}, where 1 w 2. We then apply this result to show that c=1 is a globally asymptotically stable equilibrium of the rational difference equation xn=(xn-1+xn-2+(1+w)xn-3xn-4 xn-5)/ (wx n-1xn-2+xn-3xn-4+xn-3xn&#x 2212;5+xn -4xn-5) , n =1,2,..., a0,a -1,a-2,a&#x 2212;3,a-4 > 0. |
---|---|
ISSN: | 1025-5834 1029-242X |
DOI: | 10.1155/2007/19618 |