Multi-Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design Methodology

This paper develops an ultra-low power asynchronous circuit design methodology, called Multi-Threshold NULL Convention Logic (MTNCL), also known as Sleep Convention Logic (SCL), which combines Multi-Threshold CMOS (MTCMOS) with NULL Convention Logic (NCL), to yield significant power reduction withou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low power electronics and applications 2015-05, Vol.5 (2), p.81-100
Hauptverfasser: Zhou, Liang, Parameswaran, Ravi, Parsan, Farhad A, Smith, Scott C, Di, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops an ultra-low power asynchronous circuit design methodology, called Multi-Threshold NULL Convention Logic (MTNCL), also known as Sleep Convention Logic (SCL), which combines Multi-Threshold CMOS (MTCMOS) with NULL Convention Logic (NCL), to yield significant power reduction without any of the drawbacks of applying MTCMOS to synchronous circuits. In contrast to other power reduction techniques that usually result in large area overhead, MTNCL circuits are actually smaller than their original NCL versions. MTNCL utilizes high-Vt transistors to gate power and ground of a low-Vt logic block to provide for both fast switching and very low leakage power when idle. To demonstrate the advantages of MTNCL, a number of 32-bit IEEE single-precision floating-point co-processors were designed for comparison using the 1.2 V IBM 8RF-LM 130 nm CMOS process: original NCL, MTNCL with just combinational logic (C/L) slept, Bit-Wise MTNCL (BWMTNCL), MTNCL with C/L and completion logic slept, MTNCL with C/L, completion logic, and registers slept, MTNCL with Safe Sleep architecture, and synchronous MTCMOS. These designs are compared in terms of throughput, area, dynamic energy, and idle power, showing the tradeoffs between the various MTNCL architectures, and that the best MTNCL design is much better than the original NCL design in all aspects, and much better than the synchronous MTCMOS design in terms of area, energy per operation, and idle power, although the synchronous design can operate faster.
ISSN:2079-9268
2079-9268
DOI:10.3390/jlpea5020081