ClusterM: a scalable algorithm for computational prediction of conserved protein complexes across multiple protein interaction networks

The current computational methods on identifying conserved protein complexes across multiple Protein-Protein Interaction (PPI) networks suffer from the lack of explicit modeling of the desired topological properties within conserved protein complexes as well as their scalability. To overcome those i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2020-11, Vol.21 (Suppl 10), p.615-615, Article 615
Hauptverfasser: Wang, Yijie, Jeong, Hyundoo, Yoon, Byung-Jun, Qian, Xiaoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current computational methods on identifying conserved protein complexes across multiple Protein-Protein Interaction (PPI) networks suffer from the lack of explicit modeling of the desired topological properties within conserved protein complexes as well as their scalability. To overcome those issues, we propose a scalable algorithm-ClusterM-for identifying conserved protein complexes across multiple PPI networks through the integration of network topology and protein sequence similarity information. ClusterM overcomes the computational barrier that existed in previous methods, where the complexity escalates exponentially when handling an increasing number of PPI networks; and it is able to detect conserved protein complexes with both topological separability and cohesive protein sequence conservation. On two independent compendiums of PPI networks from Saccharomyces cerevisiae (Sce, yeast), Drosophila melanogaster (Dme, fruit fly), Caenorhabditis elegans (Cel, worm), and Homo sapiens (Hsa, human), we demonstrate that ClusterM outperforms other state-of-the-art algorithms by a significant margin and is able to identify de novo conserved protein complexes across four species that are missed by existing algorithms. ClusterM can better capture the desired topological property of a typical conserved protein complex, which is densely connected within the complex while being well-separated from the rest of the networks. Furthermore, our experiments have shown that ClusterM is highly scalable and efficient when analyzing multiple PPI networks.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-020-07010-1