Molecular subtype identification and prognosis stratification based on golgi apparatus-related genes in head and neck squamous cell carcinoma

Abnormal dynamics of the Golgi apparatus reshape the tumor microenvironment and immune landscape, playing a crucial role in the prognosis and treatment response of cancer. This study aims to investigate the potential role of Golgi apparatus-related genes (GARGs) in the heterogeneity and prognosis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medical genomics 2024-02, Vol.17 (1), p.53-12, Article 53
Hauptverfasser: Zhang, Aichun, He, Xiao, Zhang, Chen, Tang, Xuxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abnormal dynamics of the Golgi apparatus reshape the tumor microenvironment and immune landscape, playing a crucial role in the prognosis and treatment response of cancer. This study aims to investigate the potential role of Golgi apparatus-related genes (GARGs) in the heterogeneity and prognosis of head and neck squamous cell carcinoma (HNSCC). Transcriptional data and corresponding clinical information of HNSCC were obtained from public databases for differential expression analysis, consensus clustering, survival analysis, immune infiltration analysis, immune therapy response assessment, gene set enrichment analysis, and drug sensitivity analysis. Multiple machine learning algorithms were employed to construct a prognostic model based on GARGs. A nomogram was used to integrate and visualize the multi-gene model with clinical pathological features. A total of 321 GARGs that were differentially expressed were identified, out of which 69 were associated with the prognosis of HNSCC. Based on these prognostic genes, two molecular subtypes of HNSCC were identified, which showed significant differences in prognosis. Additionally, a risk signature consisting of 28 GARGs was constructed and demonstrated good performance for assessing the prognosis of HNSCC. This signature divided HNSCC into the high-risk and low-risk groups with significant differences in multiple clinicopathological characteristics, including survival outcome, grade, T stage, chemotherapy. Immune response-related pathways were significantly activated in the high-risk group with better prognosis. There were significant differences in chemotherapy drug sensitivity and immune therapy response between the high-risk and low-risk groups, with the low-risk group being more suitable for receiving immunotherapy. Riskscore, age, grade, and radiotherapy were independent prognostic factors for HNSCC and were used to construct a nomogram, which had good clinical applicability. We successfully identified molecular subtypes and prognostic signature of HNSCC that are derived from GARGs, which can be used for the assessment of HNSCC prognosis and treatment responses.
ISSN:1755-8794
1755-8794
DOI:10.1186/s12920-024-01823-9