Carnot-Like Heat Engines Versus Low-Dissipation Models

In this paper, a comparison between two well-known finite time heat engine models is presented: the Carnot-like heat engine based on specific heat transfer laws between the cyclic system and the external heat baths and the Low-Dissipation model where irreversibilities are taken into account by expli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2017-04, Vol.19 (4), p.182
Hauptverfasser: Gonzalez-Ayala, Julian, Roco, José, Medina, Alejandro, Calvo Hernández, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a comparison between two well-known finite time heat engine models is presented: the Carnot-like heat engine based on specific heat transfer laws between the cyclic system and the external heat baths and the Low-Dissipation model where irreversibilities are taken into account by explicit entropy generation laws. We analyze the mathematical relation between the natural variables of both models and from this the resulting thermodynamic implications. Among them, particular emphasis has been placed on the physical consistency between the heat leak and time evolution on the one side, and between parabolic and loop-like behaviors of the parametric power-efficiency plots. A detailed analysis for different heat transfer laws in the Carnot-like model in terms of the maximum power efficiencies given by the Low-Dissipation model is also presented.
ISSN:1099-4300
1099-4300
DOI:10.3390/e19040182