Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids[S]

Oxidized phospholipids (OxPLs) are increasingly recognized as pleiotropic lipid mediators demonstrating a variety of biological activities. In particular, OxPLs induce electrophilic stress response and stimulate expression of NF-E2-related factor 2 (NRF2)-dependent genes. The mechanisms of NRF2 upre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research 2011-01, Vol.52 (1), p.98-103
Hauptverfasser: Afonyushkin, Taras, Oskolkova, Olga V., Binder, Bernd R., Bochkov, Valery N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidized phospholipids (OxPLs) are increasingly recognized as pleiotropic lipid mediators demonstrating a variety of biological activities. In particular, OxPLs induce electrophilic stress response and stimulate expression of NF-E2-related factor 2 (NRF2)-dependent genes. The mechanisms of NRF2 upregulation in response to OxPLs, however, are incompletely understood. Here we show that upregulation of NRF2 by OxPLs depends on the activity of the CK2 protein kinase. Inactivation of CK2 by chemical inhibitors or gene silencing resulted in diminished accumulation of NRF2 and its target genes, GCLM, HMOX1, and NQO1, downstream in response to OxPLs. Furthermore, inhibition of CK2 suppressed NRF2-dependent induction of ATF4 and its downstream gene VEGF. Thus, inactivation of CK2 in OxPL-treated endothelial cells results in inhibition of the NRF2-ATF4-VEGF axis and is likely to produce antiangiogenic effects. This work characterizes novel cross-talk between CK2 and cellular stress pathways, which may provide additional insights into the mechanisms of beneficial action and side-effects of CK2 inhibitors.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M009480