Complex chemistry of carbon nanotubes toward efficient and stable p-type doping
Developing efficient and stable carbon nanotube (CNT) doping techniques and elucidating their chemistry is essential for their further implementation in electronic and energy devices. Here, protonic acids and lithium salts are employed as p-type inducers and stabilizers of the doped state, respectiv...
Gespeichert in:
Veröffentlicht in: | Communications materials 2024-02, Vol.5 (1), p.21-7, Article 21 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing efficient and stable carbon nanotube (CNT) doping techniques and elucidating their chemistry is essential for their further implementation in electronic and energy devices. Here, protonic acids and lithium salts are employed as p-type inducers and stabilizers of the doped state, respectively. Leveraging the electron-withdrawing capability of protons, protonic acids can easily induce heavily p-doped states in CNTs. Anionic species from the acids attach to the positively charged CNTs to achieve charge compensation. Introducing lithium salts with bulky, charge-delocalized anions to the p-doped CNTs results in an anion replacement driven by the free energy gain. The newly formed complexes demonstrate outstanding thermal stability in air, enduring a temperature of 100 °C for over a year. The chemical hardness of the applied anion effectively explains the difference in stability of the doped CNTs, indicating that the doping process and its stabilization can be understood and controlled through complex chemistry.
Doped carbon nanotubes are essential for molecular electronic and energy devices. Here, protonic acids and lithium salts are employed as hole dopants and stabilizers, respectively, to induce thermally stable p-doped states in carbon nanotubes. |
---|---|
ISSN: | 2662-4443 2662-4443 |
DOI: | 10.1038/s43246-024-00460-0 |