Specific Detection of SARS-CoV-2 Variants B.1.1.7 (Alpha) and B.1.617.2 (Delta) Using a One-Step Quantitative PCR Assay
In this report, we describe the development of a reverse transcription-quantitative PCR (RT-qPCR) assay, termed Alpha-Delta assay, which can detect all severe acute respiratory syndrome coronavirus 2 (SC-2) variants and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alph...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2022-04, Vol.10 (2), p.e0217621 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this report, we describe the development of a reverse transcription-quantitative PCR (RT-qPCR) assay, termed Alpha-Delta assay, which can detect all severe acute respiratory syndrome coronavirus 2 (SC-2) variants and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alpha- and Delta-specific reactions in the assay target mutations that are strongly linked to the target variant. The Alpha reaction targets the D3L substitution in the N gene, and the Delta reaction targets the spike gene 156 to 158 mutations. Additionally, we describe a second Delta-specific assay that we use as a confirmatory test for the Alpha-Delta assay that targets the 119 to 120 deletion in the Orf8 gene. Both reactions have similar sensitivities of 15 to 25 copies per reaction, similar to the sensitivity of commercial SC-2 detection tests. The Alpha-Delta assay and the Orf8
assay were successfully used to classify clinical samples that were subsequently analyzed by whole-genome sequencing. Lastly, the capability of the Alpha-Delta assay and Orf8
assay to identify correctly the presence of Delta RNA in wastewater samples was demonstrated. This study provides a rapid, sensitive, and cost-effective tool for detecting and classifying two worldwide dominant SC-2 variants. It also highlights the importance of a timely diagnostic response to the emergence of new SC-2 variants with significant consequences on global health.
The new assays described herein enable rapid, straightforward, and cost-effective detection of severe acute respiratory syndrome coronavirus 2 (SC-2) with immediate classification of the examined sample as Alpha, Delta, non-Alpha, or non-Delta variant. This is highly important for two main reasons: (i) it provides the scientific and medical community with a novel diagnostic tool to rapidly detect and classify any SC-2 sample of interest as Alpha, Delta, or none and can be applied to both clinical and environmental samples, and (ii) it demonstrates how to respond to the emergence of new variants of concern by developing a variant-specific assay. Such assays should improve our preparedness and adjust the diagnostic capacity to serve clinical, epidemiological, and research needs. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.02176-21 |